Liouville property of harmonic functions of finite energy for Dirichlet forms

Masatoshi Fukushima (Osaka)

March 18, 2017

Dirichlet forms and their geometry

Tohoku University, Sendai

Some generalities

- **(2)** Liouville property of energy form on \mathbb{R}^n
- 3 Strongly local transient Dirichlet form \mathcal{E} and a time change \check{X} of the associated diffusion
- **5** Liouville property of \mathcal{E} and uniqueness of a symmetric conservative diffusion extension of \check{X}

The title of my tomorrow's talk will be changed

from

Reflections at infinity of time changed RBMs on a domain with Liouville branches

to

Symmetric extensions of one-dimensional time changed minimal diffusions and multidimensional time changed RBMs

Some generalities

Let $(\mathcal{E}, \mathcal{F})$ be a regular Dirichlet form on $L^2(E; m)$ with an associated Hunt process $X = (X_t, \mathbf{P}_x)$ on E. Let \mathcal{F}_e and \mathcal{F}^{ref} be its extended Dirichlet space and its reflected Dirichlet space, repectively.

Then $\mathcal{F} \subset \mathcal{F}_e \subset \mathcal{F}^{\mathrm{ref}}$ and \mathcal{E} is extended to both spaces.

Some generalities

Let $(\mathcal{E}, \mathcal{F})$ be a regular Dirichlet form on $L^2(E; m)$ with an associated Hunt process $X = (X_t, \mathbf{P}_x)$ on E. Let \mathcal{F}_e and \mathcal{F}^{ref} be its extended Dirichlet space and its reflected Dirichlet space, repectively.

Then $\mathcal{F} \subset \mathcal{F}_e \subset \mathcal{F}^{\mathrm{ref}}$ and \mathcal{E} is extended to both spaces.

 $(\mathcal{F}_e, \mathcal{E})$ is a real Hilbert space if and only if $(\mathcal{E}, \mathcal{F})$ is transient.

Some generalities

Let $(\mathcal{E}, \mathcal{F})$ be a regular Dirichlet form on $L^2(E; m)$ with an associated Hunt process $X = (X_t, \mathbf{P}_x)$ on E. Let \mathcal{F}_e and \mathcal{F}^{ref} be its extended Dirichlet space and its reflected Dirichlet space, repectively.

Then $\mathcal{F} \subset \mathcal{F}_e \subset \mathcal{F}^{\mathrm{ref}}$ and \mathcal{E} is extended to both spaces.

 $(\mathcal{F}_e, \mathcal{E})$ is a real Hilbert space if and only if $(\mathcal{E}, \mathcal{F})$ is transient.

For $f \in \mathcal{F}_{loc}$, define using the Beurling-Deny decomposition

$$\widetilde{\mathcal{E}}(f,f) = \frac{1}{2} \mu_{\langle f \rangle}^c(E) + \frac{1}{2} \int_{E \times E} (f(x) - f(y))^2 J(dx,dy) + \int_E f(x)^2 \kappa(dx) \leq \infty$$

・ロト・西ト・ヨト・ヨー シック

Let
$$(\tau_k u)(x) = ((-k) \lor u(x)) \land k, \ x \in E$$
. Then $(\mathcal{F}^{ref}, \mathcal{E})$ is defined as

$$\begin{cases}
\mathcal{F}^{ref} = \left\{ u: \ |u| < \infty[m], \ \tau_k u \in \mathcal{F}_{loc}, \ \forall k \ge 1, \ \sup_{k \ge 1} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) < \infty \right\} \\
\mathcal{E}(u, u) = \lim_{k \to \infty} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) \quad \text{for} \quad u \in \mathcal{F}^{ref}.
\end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let
$$(\tau_k u)(x) = ((-k) \lor u(x)) \land k, \ x \in E$$
. Then $(\mathcal{F}^{ref}, \mathcal{E})$ is defined as

$$\begin{cases}
\mathcal{F}^{ref} = \left\{ u: \ |u| < \infty[m], \ \tau_k u \in \mathcal{F}_{loc}, \ \forall k \ge 1, \ \sup_{k \ge 1} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) < \infty \right\} \\
\mathcal{E}(u, u) = \lim_{k \to \infty} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) \quad \text{for} \quad u \in \mathcal{F}^{ref}.
\end{cases}$$

\mathcal{F}_e was introduced by M.L. Silverstein in 1974.

 $\mathcal{F}^{\rm ref}$ was also introduced by Silverstein in 1974 but was reformulated as above by Z.-Q, Chen in 1992,

which is extended to any quasi-regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ in the recent book[CF2].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let
$$(\tau_k u)(x) = ((-k) \lor u(x)) \land k, \ x \in E$$
. Then $(\mathcal{F}^{ref}, \mathcal{E})$ is defined as

$$\begin{cases}
\mathcal{F}^{ref} = \left\{ u: \ |u| < \infty[m], \ \tau_k u \in \mathcal{F}_{loc}, \ \forall k \ge 1, \ \sup_{k \ge 1} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) < \infty \right\} \\
\mathcal{E}(u, u) = \lim_{k \to \infty} \widetilde{\mathcal{E}}(\tau_k u, \tau_k u) \quad \text{for} \quad u \in \mathcal{F}^{ref}.
\end{cases}$$

\mathcal{F}_e was introduced by M.L. Silverstein in 1974.

 $\mathcal{F}^{\rm ref}$ was also introduced by Silverstein in 1974 but was reformulated as above by Z.-Q, Chen in 1992,

which is extended to any quasi-regular Dirichlet form $(\mathcal{E},\mathcal{F})$ in the recent book[CF2].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathcal{F}^{\mathrm{ref}} = \mathcal{F}_e$$
 if $(\mathcal{E}, \mathcal{F})$ is recurrent.

Define the linear subspace \mathcal{H}^* of $\mathcal{F}^{\mathrm{ref}}$ by

$$\mathcal{H}^* = \{ u \in \mathcal{F}^{\mathrm{ref}} : \mathcal{E}(u, v) = 0 \text{ for any } v \in \mathcal{F}_e \}.$$

 \mathcal{H}^* is the collection of X-harmonic functions u on E of finite energy $\mathcal{E}(u,u).$

We will be concerned with a specific Liouville property

$$\dim(\mathcal{H}^*) = 1 \tag{1.1}$$

of the form $\mathcal E$ and its probabilistic significance.

Define the linear subspace \mathcal{H}^* of $\mathcal{F}^{\mathrm{ref}}$ by

$$\mathcal{H}^* = \{ u \in \mathcal{F}^{\mathrm{ref}} : \mathcal{E}(u, v) = 0 \quad \text{for any} \quad v \in \mathcal{F}_e \}.$$

 \mathcal{H}^* is the collection of X-harmonic functions u on E of finite energy $\mathcal{E}(u,u).$

We will be concerned with a specific Liouville property

$$\dim(\mathcal{H}^*) = 1 \tag{1.1}$$

of the form \mathcal{E} and its probabilistic significance.

We first give two general remarks on the Liouville property (1.1). A Borel function h on E is said to be X-harmonic if it is specified and finite up to quasi equivalence and if for every relatively compact open subset $G \subset E$, $\mathbf{E}_x[|h(X_{\tau_G})|] < \infty$ and $h(x) = \mathbf{E}_x[h(X_{\tau_G}]$ for q.e. $x \in E$, where τ_G denotes the first exit time from G. Define the linear subspace \mathcal{H}^* of $\mathcal{F}^{\mathrm{ref}}$ by

$$\mathcal{H}^* = \{ u \in \mathcal{F}^{\mathrm{ref}} : \mathcal{E}(u, v) = 0 \quad \text{for any} \quad v \in \mathcal{F}_e \}.$$

 \mathcal{H}^* is the collection of X-harmonic functions u on E of finite energy $\mathcal{E}(u,u).$

We will be concerned with a specific Liouville property

$$\dim(\mathcal{H}^*) = 1 \tag{1.1}$$

of the form $\mathcal E$ and its probabilistic significance.

We first give two general remarks on the Liouville property (1.1). A Borel function h on E is said to be X-harmonic if it is specified and finite up to quasi equivalence and if for every relatively compact open subset $G \subset E$, $\mathbf{E}_x[|h(X_{\tau_G})|] < \infty$ and $h(x) = \mathbf{E}_x[h(X_{\tau_G}]$ for q.e. $x \in E$, where τ_G denotes the first exit time from G. By the next proposition, we only need to consider the transient form \mathcal{E} to study the Liouville property (1.1).

Proposition 1.1

(i) If \mathcal{E} is irreducible and recurrent, then \mathcal{E} enjoys the property (1.1).

(ii) If \mathcal{E} is transient and if any bounded X-harmonic function on E is constant, then \mathcal{E} enjoys the property (1.1).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition 1.1

(i) If \mathcal{E} is irreducible and recurrent, then \mathcal{E} enjoys the property (1.1).

(ii) If \mathcal{E} is transient and if any bounded X-harmonic function on E is constant, then \mathcal{E} enjoys the property (1.1).

For an Euclidean domain $D \subset \mathbb{R}^n$,

the Beppo Levi space and the Sobolev space of order $\left(1,2\right)$ are defined, respectively, by

$$BL(D) = \{ u \in L^2_{loc}(D) : |\nabla u| \in L^2(D) \}, \quad H^1(D) = BL(D) \cap L^2(D).$$
(1.2)

Let $\mathbf{D}(u, v) = \int_D \nabla u(x) \cdot \nabla v(x) dx$, $u, v \in \mathrm{BL}(D)$.

The space BL(D) is just the space of Schwartz distributions whose first order derivatives are in $L^2(D)$.

It was introduced and profoundly studied by Deny-Lions [DL. 1953] following the preceding works by Beppo Levi [L, 1906], Nikodym [N, 1933] and Deny [De1, 1950].

The space BL(D) is just the space of Schwartz distributions whose first order derivatives are in $L^2(D)$.

It was introduced and profoundly studied by Deny-Lions [DL. 1953] following the preceding works by Beppo Levi [L, 1906], Nikodym [N, 1933] and Deny [De1, 1950].

This space was one of the original sources of the notion of the Dirichlet space introduced by Beurling-Deny [BD, 1959] which was basically free from the choice of the underlying symmetrizing measure.

The space BL(D) is just the space of Schwartz distributions whose first order derivatives are in $L^2(D)$.

It was introduced and profoundly studied by Deny-Lions [DL. 1953] following the preceding works by Beppo Levi [L, 1906], Nikodym [N, 1933] and Deny [De1, 1950].

This space was one of the original sources of the notion of the Dirichlet space introduced by Beurling-Deny [BD, 1959] which was basically free from the choice of the underlying symmetrizing measure.

Later on, the space $\mathsf{BL}(D)$ was designated as $L^1_2(D)$ by Maz'ja [M,1985] and studied in a more general context of the spaces $L^\ell_p(D)$ for p>0 and integers $\ell.$

However the space BL(D) bears its own independent potential theoretic and probabilistic significances from the beginning.

See [De1], Brelot[Br,1953], Doob[Do,1962], Fukushima[F1,1969] and Deny[De2,1970] in this connection.

Now suppose a domain $D \subset \mathbb{R}^n$ is either of continuous boundary or an extendable domain relative to $H^1(D)$.

The symmetric form ${\mathcal E}$ with ${\mathcal D}({\mathcal E})={\mathcal F}$ defined by

$$\mathcal{E} = \frac{1}{2}\mathbf{D}, \qquad \mathcal{F} = H^1(D), \tag{1.3}$$

is then a regular strongly local irreducible Dirichlet form on $L^2(\overline{D})$ and the associated diffusion X on \overline{D} is by definition the reflecting Brownian motion (RBM in abbreviation). Now suppose a domain $D \subset \mathbb{R}^n$ is either of continuous boundary or an extendable domain relative to $H^1(D)$.

The symmetric form ${\mathcal E}$ with ${\mathcal D}({\mathcal E})={\mathcal F}$ defined by

$$\mathcal{E} = \frac{1}{2}\mathbf{D}, \qquad \mathcal{F} = H^1(D),$$
 (1.3)

is then a regular strongly local irreducible Dirichlet form on $L^2(\overline{D})$ and the associated diffusion X on \overline{D} is by definition the reflecting Brownian motion (RBM in abbreviation).

The extended Dirichlet space of \mathcal{E} is denoted by $H_e^1(D)$ and called the extended Sobolev space of order 1.

Now suppose a domain $D \subset \mathbb{R}^n$ is either of continuous boundary or an extendable domain relative to $H^1(D)$.

The symmetric form ${\mathcal E}$ with ${\mathcal D}({\mathcal E})={\mathcal F}$ defined by

$$\mathcal{E} = \frac{1}{2}\mathbf{D}, \qquad \mathcal{F} = H^1(D), \tag{1.3}$$

is then a regular strongly local irreducible Dirichlet form on $L^2(\overline{D})$ and the associated diffusion X on \overline{D} is by definition the reflecting Brownian motion (RBM in abbreviation).

The extended Dirichlet space of \mathcal{E} is denoted by $H_e^1(D)$ and called the extended Sobolev space of order 1.

BL(D) is nothing but the reflected Dirichlet space of this form \mathcal{E} ([CF2]). The space $\mathcal{H}^* = BL(D) \ominus H^1_e(D)$ consists of those functions on D with finite Dirichlet integral such that they are not only harmonic on D in the ordinary sense but also their quasi continuous versions are harmonic with respect to the RBM Z on \overline{D} .

It was shown in [CF1, 2009] that \mathcal{E} fulfills the Liouville property (1.1) when $D \subset \mathbb{R}^n$ is a uniform domain in the sense of Väisälä[V, 1998].

It was shown in [CF1, 2009] that \mathcal{E} fulfills the Liouville property (1.1) when $D \subset \mathbb{R}^n$ is a uniform domain in the sense of Väisälä[V, 1998].

On the other hand, it can be demonstrated that $\dim(\mathcal{H}^*) = N$ when $n \ge 3$ and D is a Lipschitz domain with N number of Liouville branches in the sense formulated in tomorrow's talk. It was shown in [CF1, 2009] that \mathcal{E} fulfills the Liouville property (1.1) when $D \subset \mathbb{R}^n$ is a uniform domain in the sense of Väisälä[V, 1998].

On the other hand, it can be demonstrated that $\dim(\mathcal{H}^*) = N$ when $n \geq 3$ and D is a Lipschitz domain with N number of Liouville branches in the sense formulated in tomorrow's talk.

In the simplest case that $D = \mathbb{R}^n$ the whole space, \mathcal{H}^* is just the space of harmonic functions on \mathbb{R}^n with finite Dirichlet integrals.

Brelot [Br,1953] first observed that the property (1.1) is valid, namely, any harmonic function on \mathbb{R}^n with finite Dirichlet integral is constant.

A simple question arises:

(Q) Is the property (1.1) still valid for the whole space \mathbb{R}^n and for more general Dirichlet forms than $\frac{1}{2}\mathbf{D}$?

Liouville property of energy form on \mathbb{R}^n

Consider a measurable function $\rho(x)$ on \mathbb{R}^n such that

$$0 < \lambda_{\ell} \le \rho(x) \le \Lambda_{\ell} < \infty, \quad \text{for every } x \in B_{\ell} := \{ |x| < \ell \}, \quad \ell > 0.$$
(2.1)
for constants λ_{ℓ} , Λ_{ℓ} depending on $\ell > 0$,

and the associated spaces $\mathcal{F}^{
ho},\ \mathcal{G}^{
ho}$ and form $\mathbf{D}^{
ho}$ defined respectively by

$$\mathcal{F}^{\rho} = \{ u \in L^2(\mathbb{R}^n; \rho dx) : |\nabla u| \in L^2(\mathbb{R}^n; \rho dx) \},$$
(2.2)

$$\mathcal{G}^{\rho} = \{ u \in L^2_{\text{loc}}(\mathbb{R}^n) : |\nabla u| \in L^2(\mathbb{R}^n; \rho dx) \},$$
(2.3)

$$\mathbf{D}^{\rho}(u,v) = \int_{\mathbb{R}^n} \nabla u(x) \cdot \nabla v(x) \ \rho(x) \ dx.$$
 (2.4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition 2.1

(i) The energy form $\mathcal{E}^{\rho} = (\mathbf{D}^{\rho}, \mathcal{F}^{\rho})$ is a regular strongly local and irreducible Dirichlet form on $L^{2}(\mathbb{R}^{n}; \rho dx)$.

(ii) The quotient space $\dot{\mathcal{G}}^{\rho}$ of the weighted Beppo Levi space \mathcal{G}^{ρ} by constant functions is a Hilbert space with inner product \mathbf{D}^{ρ} .

(iii) Let $(\mathcal{F}_{e}^{\rho}, \mathcal{E}^{\rho})$ be the extended Dirichlet space of the energy form $(\mathcal{E}^{\rho}\mathcal{F}^{\rho})$. Then $\mathcal{F}_{e}^{\rho} \subset \mathcal{G}^{\rho}$ and $\mathcal{E}^{\rho}(u, u) = \mathbf{D}^{\rho}(u, u), \quad u \in \mathcal{F}_{e}^{\rho}$. (iv) Let $(\mathcal{F}^{\rho, \mathrm{ref}}, \mathcal{E}^{\rho, \mathrm{ref}})$ be the reflected Dirichlet space of the energy form \mathcal{E}^{ρ} . Then $\mathcal{F}^{\rho, \mathrm{ref}} = \mathcal{G}^{\rho}, \quad \mathcal{E}^{\rho, \mathrm{ref}} = \mathbf{D}^{\rho}$.

Proposition 2.1

(i) The energy form $\mathcal{E}^{\rho} = (\mathbf{D}^{\rho}, \mathcal{F}^{\rho})$ is a regular strongly local and irreducible Dirichlet form on $L^{2}(\mathbb{R}^{n}; \rho dx)$.

(ii) The quotient space $\dot{\mathcal{G}}^{\rho}$ of the weighted Beppo Levi space \mathcal{G}^{ρ} by constant functions is a Hilbert space with inner product \mathbf{D}^{ρ} .

(iii) Let $(\mathcal{F}_{e}^{\rho}, \mathcal{E}^{\rho})$ be the extended Dirichlet space of the energy form $(\mathcal{E}^{\rho}\mathcal{F}^{\rho})$. Then $\mathcal{F}_{e}^{\rho} \subset \mathcal{G}^{\rho}$ and $\mathcal{E}^{\rho}(u, u) = \mathbf{D}^{\rho}(u, u), \quad u \in \mathcal{F}_{e}^{\rho}$. (iv) Let $(\mathcal{F}^{\rho, \mathrm{ref}}, \mathcal{E}^{\rho, \mathrm{ref}})$ be the reflected Dirichlet space of the energy form \mathcal{E}^{ρ} . Then $\mathcal{F}^{\rho, \mathrm{ref}} = \mathcal{G}^{\rho}, \quad \mathcal{E}^{\rho, \mathrm{ref}} = \mathbf{D}^{\rho}$.

Corollary 2.2

If $\lambda_{\ell}, \Lambda_{\ell}$ are independent of $\ell > 1$., then the energy form \mathcal{E}^{ρ} has the Loiuville property (2.1).

because $\mathcal{F}_e^{\rho} = H_e^1(\mathbb{R}^n), \ \mathcal{G}^{\rho} = \mathrm{BL}(\mathbb{R}^n)$ in this case.

Theorem 2.3

Let $\rho(x) = \eta(|x|), x \in \mathbb{R}^n$, for a positive C^{∞} -function η on $[0, \infty)$ such that η is constant on $[0, \epsilon)$ for some $\epsilon > 0$. Then the energy form \mathcal{E}^{ρ} satisfies the Liouville property (1.1) when $n \geq 2$. When n = 1, $\dim(\mathcal{H}^*) = 2$ in transient case.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem 2.3

Let $\rho(x) = \eta(|x|), x \in \mathbb{R}^n$, for a positive C^{∞} -function η on $[0, \infty)$ such that η is constant on $[0, \epsilon)$ for some $\epsilon > 0$. Then the energy form \mathcal{E}^{ρ} satisfies the Liouville property (1.1) when $n \geq 2$. When n = 1, $\dim(\mathcal{H}^*) = 2$ in transient case.

Proof. In view of Proposition 1.1 and Proposition 2.1, it suffices to consider only the transient case in order to verify the Liouville property (1.1).

According to the first edition of [FOT], \mathcal{E}^{ρ} is transient if and only if

$$\int_{1}^{\infty} \frac{1}{\eta(r)r^{n-1}} dr < \infty.$$
(2.5)

In what follows, we assume that η satisfies condition (2.5).

We use the polar coordinate

$$x_1 = r \cos \theta_1, \ x_2 = r \sin \theta_1 \cos \theta_2, \ x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3, \cdots,$$

$$x_{n-1} = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \cos \theta_{n-1},$$
$$x_n = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \sin \theta_{n-1}.$$

Then, for $u, v \in C_c^1(\mathbb{R}^n)$,

$$\mathbf{D}^{\rho}(u,v) =$$

$$\iint \left[u_r v_r + \frac{u_{\theta_1} v_{\theta_1}}{r^2} + \frac{u_{\theta_2} v_{\theta_2}}{r^2 \sin^2 \theta_1} + \dots + \frac{u_{\theta_{n-1}} v_{\theta_{n-1}}}{r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}} \right]$$

$$\times \eta(r) r^{n-1} \sin^{n-2} \theta_1 \cdots \sin \theta_{n-2} dr d\theta_1 \cdots d\theta_{n-1}.$$
(2.6)

For a C^{∞} -function u on \mathbb{R}^n , we denote by $I_{\eta}(u, u)$ the value of the integral of the right hand side of (2.6) for v = u.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

By noting that $\rho(x) = \eta(|x|)$ is a C^{∞} -function on \mathbb{R}^n , we let

$$Lu(x) = \Delta u(x) + \nabla \log \rho(x) \cdot \nabla u(x), \quad x \in \mathbb{R}^n.$$
(2.7)

We say that u is \mathcal{E}^{ρ} -harmonic if

$$u \in C^{\infty}(\mathbb{R}^n), \quad Lu(x) = 0, \ x \in \mathbb{R}^n.$$

u belongs to the space $\mathcal{H}^*=\mathcal{G}^\rho\ominus\mathcal{F}^\rho_e$ if and only if

$$u ext{ is } \mathcal{E}^{\rho} ext{-harmonic and } I_{\eta}(u, u) < \infty.$$
 (2.8)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

By noting that $\rho(x) = \eta(|x|)$ is a C^{∞} -function on \mathbb{R}^n , we let

$$Lu(x) = \Delta u(x) + \nabla \log \rho(x) \cdot \nabla u(x), \quad x \in \mathbb{R}^n.$$
(2.7)

We say that u is \mathcal{E}^{ρ} -harmonic if

$$u \in C^{\infty}(\mathbb{R}^n), \quad Lu(x) = 0, \ x \in \mathbb{R}^n.$$

u belongs to the space $\mathcal{H}^*=\mathcal{G}^\rho\ominus\mathcal{F}^\rho_e$ if and only if

$$u ext{ is } \mathcal{E}^{\rho} ext{-harmonic and } I_{\eta}(u, u) < \infty.$$
 (2.8)

Now take any function $u \in \mathcal{H}^*$. We can then derive from the transience condition (2.5) that

$$u_{\theta_k} = 0, \qquad 1 \le k \le n - 1.$$
 (2.9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thus
$$u \in \mathcal{H}^*$$
 depends only on r and, in terms of a scale function
 $ds(r) = \frac{dr}{\eta(r)r^{n-1}}$ on $(0, \infty)$,
the conditions (2.7) on u is reduced to

$$I_{\eta}(u,u) = \sigma_n \int_0^\infty \left(\frac{du(r)}{ds(r)}\right)^2 ds(r) < \infty, \quad Lu(r) = \frac{1}{r^{n-1}} \frac{d}{dr} \cdot \frac{du(r)}{ds(r)} = 0,$$

 \square

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

so that
$$\frac{du(r)}{ds(r)}$$
 equals a constant C
and $I_{\eta}(u, u) = \sigma_n C^2 s(0, \infty) < \infty$.

When $n\geq 2,\, s(0,\infty)=\infty$ and we get C=0, yielding that u is constant.

Thus
$$u \in \mathcal{H}^*$$
 depends only on r and, in terms of a scale function
 $ds(r) = \frac{dr}{\eta(r)r^{n-1}}$ on $(0, \infty)$,
the conditions (2.7) on u is reduced to

$$I_{\eta}(u,u) = \sigma_n \int_0^\infty \left(\frac{du(r)}{ds(r)}\right)^2 ds(r) < \infty, \quad Lu(r) = \frac{1}{r^{n-1}} \frac{d}{dr} \cdot \frac{du(r)}{ds(r)} = 0,$$

so that
$$\frac{du(r)}{ds(r)}$$
 equals a constant C
and $I_{\eta}(u, u) = \sigma_n C^2 s(0, \infty) < \infty$.

When $n \geq 2, \ s(0,\infty) = \infty$ and we get C = 0, yielding that u is constant.

We conjecture that the energy form \mathcal{E}^{ρ} on \mathbb{R}^{n} always satisfies the Liouville property when $n \geq 2$ under the local uniform ellipticity (2.1).

Strongly local transient Dirichlet form ${\mathcal E}$ and a time change \check{X} of the associated diffusion

From now on, we fix a general transient and strongly local Dirichlet form $(\mathcal{E},\mathcal{F})$ on $L^2(E;m)$.

 $\mathcal{F}_e, \ \mathcal{F}^{\mathrm{ref}}$ denote its extended and reflected Dirichlet space, respectively.

・ロト・日本・モート モー うへぐ

Strongly local transient Dirichlet form ${\mathcal E}$ and a time change \check{X} of the associated diffusion

From now on, we fix a general transient and strongly local Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(E; m)$. $\mathcal{F}_e, \ \mathcal{F}^{\mathrm{ref}}$ denote its extended and reflected Dirichlet space, respectively. Let $X = (X_t, \zeta, \mathbf{P}_x)$ be the associated diffusion process on E. The lifetime ζ of X can be finite or infinite. Since X admits no killing inside E,

$$\mathbf{P}_{x}(\lim_{t \to \zeta} X_{t} = \partial) = 1 \quad \text{q.e.} \quad x \in E,$$
(3.1)

$$\mathbf{P}_x(\lim_{t \to \zeta} u(X_t) = 0) = 1 \quad \text{q.e.} \quad x \in E,$$
(3.2)

where ∂ is the point at infinity of E and u is any quasi continuous function belonging to the extended Dirichlet space \mathcal{F}_e .

Fix an arbitrary positive finite measure ν on E charging no \mathcal{E} -polar set such the the quasi-support of ν equals E.

Fix an arbitrary positive finite measure ν on E charging no $\mathcal E$ -polar set such the the quasi-support of ν equals E. Let A be the positive continuous additive functional of X with Revuz measure ν . A typical example of such a measure ν is $\nu(dx)=f(x)m(dx)$ for a strictly positive Borel function f on E with $\int_E f dm <\infty$ and, in this case, $A_t=\int_0^{t\wedge\zeta}f(X_s)ds,\ t\geq 0.$

Fix an arbitrary positive finite measure ν on E charging no \mathcal{E} -polar set such the the quasi-support of ν equals E. Let A be the positive continuous additive functional of X with Revuz measure ν . A typical example of such a measure ν is $\nu(dx) = f(x)m(dx)$ for a strictly positive Borel function f on E with $\int_E f dm < \infty$ and, in this case, $A_t = \int_0^{t\wedge\zeta} f(X_s) ds, \ t \geq 0$.

Let $\check{X} = (\check{X}_t, \check{\zeta}, \mathbf{P}_x)$ be the time changed process of X by means of A:

$$\check{X}_t = X_{\tau_t}, \quad \tau_t = \inf\{s : A_s > t\}, \qquad \check{\zeta} = A_{\zeta}.$$

 \check{X} is a diffusion process on E symmetric with respect to the measure ν and the Dirichlet form $\check{\mathcal{E}} = (\check{\mathcal{E}}, \check{\mathcal{F}})$ of \check{X} on $L^2(E; \nu)$ is given by

$$\check{\mathcal{E}} = \mathcal{E}, \qquad \check{\mathcal{F}} = \mathcal{F}_e \cap L^2(E;\nu),$$
(3.3)

which is strongly local and regular.

Proposition 3.1

(i) It holds that

$$\mathbf{P}_x(\check{\zeta} < \infty, \lim_{t \uparrow \check{\zeta}} \check{X}_t = \partial) = \mathbf{P}_x(\check{\zeta} < \infty) = 1 \text{ for q.e. } x \in E.$$
(3.4)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

(ii) The extended and reflected Dirichlet spaces of $(\check{\mathcal{E}}, \check{\mathcal{F}})$ equal $(\mathcal{F}_e, \mathcal{E})$ and $(\mathcal{F}^{ref}, \mathcal{E}^{ref})$, respectively.

Proposition 3.1

(i) It holds that

$$\mathbf{P}_x(\check{\zeta} < \infty, \lim_{t \uparrow \check{\zeta}} \check{X}_t = \partial) = \mathbf{P}_x(\check{\zeta} < \infty) = 1 \text{ for q.e. } x \in E.$$
(3.4)

(ii) The extended and reflected Dirichlet spaces of $(\check{\mathcal{E}}, \check{\mathcal{F}})$ equal $(\mathcal{F}_e, \mathcal{E})$ and $(\mathcal{F}^{\mathrm{ref}}, \mathcal{E}^{\mathrm{ref}})$, respectively.

Since the lifetime $\check{\zeta}$ of the time changed diffusion \check{X} is finite \mathbf{P}_x -a.s. for q.e. $x \in E$ by the above lemma,

the boundary problem concerning possible Markovian extensions of \check{X} beyond its lifetime $\check{\zeta}$ makes a perfect sense.

Proposition 3.1

 $(i) \mbox{ It holds that }$

$$\mathbf{P}_x(\check{\zeta} < \infty, \lim_{t \uparrow \check{\zeta}} \check{X}_t = \partial) = \mathbf{P}_x(\check{\zeta} < \infty) = 1 \text{ for q.e. } x \in E.$$
(3.4)

(ii) The extended and reflected Dirichlet spaces of $(\check{\mathcal{E}},\check{\mathcal{F}})$ equal $(\mathcal{F}_e,\mathcal{E})$ and $(\mathcal{F}^{\mathrm{ref}},\mathcal{E}^{\mathrm{ref}})$, respectively.

Since the lifetime $\check{\zeta}$ of the time changed diffusion \check{X} is finite \mathbf{P}_x -a.s. for q.e. $x \in E$ by the above lemma,

the boundary problem concerning possible Markovian extensions of \check{X} beyond its lifetime $\check{\zeta}$ makes a perfect sense.

For different choices of ν , the diffusions \check{X} share a common geometric structure related each other only by time changes.

So the study of the boundary problem for X as we shall engage in the rest of my talks is a good way to make a closer look at the behavior of the diffusion process X around ∂ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

One-point reflection of \check{X} at ∂

Denote by E^* the one-point compactification $E \cup \{\partial\}$ of E.

One-point reflection of X at ∂

Denote by E^* the one-point compactification $E \cup \{\partial\}$ of E.

The measure ν is extended from E to E^* by setting $\nu(\{\partial\}) = 0$.

We construct a ν -symmetric conservative diffusion extension of X from E to E^* by constructing a regular strongly local Dirichlet form on $L^2(E^*;\nu)$. Note that $L^2(E^*;\nu)$ can be identified with $L^2(E;\nu)$.

Due to the strong locality of ${\cal E}$ and the definition of its reflected Dirichlet space ${\cal F}^{\rm ref}$, we have

$$1 \in \mathcal{F}^{\mathrm{ref}}, \qquad \mathcal{E}^{\mathrm{ref}}(1,1) = 0.$$
(4.1)

Furthermore \mathcal{F}_e does not contain a non-zero constant function because of the transience of \mathcal{E} .

In what follows, every function in the space \mathcal{F}_e is taken to be $\mathcal{E}\text{-quasi-continuous.}$

Let us define

$$\begin{cases} \mathcal{F}_{e}^{*} = \{ u + c : u \in \mathcal{F}_{e}, \ c \in \mathbb{R} \}, \\ \mathcal{E}^{*}(u_{1} + c_{1}, u_{2} + c_{2}) = \mathcal{E}(u_{1}, u_{2}), \ u_{i} \in \mathcal{F}_{e}, \ c_{i} \in \mathbb{R}, \ i = 1, 2. \end{cases}$$
(4.2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $(\mathcal{F}_e^*, \mathcal{E}^*)$ is a subspace of $(\mathcal{F}^{\mathrm{ref}}, \mathcal{E}^{\mathrm{ref}}).$

In what follows, every function in the space \mathcal{F}_e is taken to be $\mathcal{E}\text{-quasi-continuous.}$ Let us define

 $\begin{cases} \mathcal{F}_{e}^{*} = \{ u + c : u \in \mathcal{F}_{e}, \ c \in \mathbb{R} \}, \\ \mathcal{E}^{*}(u_{1} + c_{1}, u_{2} + c_{2}) = \mathcal{E}(u_{1}, u_{2}), \ u_{i} \in \mathcal{F}_{e}, \ c_{i} \in \mathbb{R}, \ i = 1, 2. \end{cases}$ (4.2)

 $(\mathcal{F}_e^*, \mathcal{E}^*)$ is a subspace of $(\mathcal{F}^{\mathrm{ref}}, \mathcal{E}^{\mathrm{ref}}).$

Theorem 4.1

(i) Define $\check{\mathcal{F}}^* = \mathcal{F}_e^* \cap L^2(E; \nu)$. The form $\check{\mathcal{E}}^* = (\mathcal{E}^*, \check{\mathcal{F}}^*)$ is then a regular strongly local Dirichlet form on $L^2(E^*; \nu)$. (ii) The extended Dirichlet space of $\check{\mathcal{E}}^*$ equals $(\mathcal{F}_e^*, \mathcal{E}^*)$. $\check{\mathcal{E}}^*$ is recurrent.

(ii) The extended Difference space of \mathcal{E} equals $(\mathcal{F}_e, \mathcal{E})$. \mathcal{E} is recurrent. (iii) Let $\check{X}^* = (\check{X}_t^*, \mathbf{P}_x^*)$ be the diffusion process on E^* associated with $\check{\mathcal{E}}^*$.

The part of \check{X}^* on E being killed upon hitting ∂ is then identical in law with the time changed diffusion \check{X} .

 \check{X}^* is conservative and irreducible.

We call \check{X}^* the one-point reflection of \check{X} at ∂ .

The first construction of such a one-point reflection at ∂ goes back to [F1, 1969] where $\check{X} = X$ and X was the absorbing Brownian motion on an arbitrary bounded domain of \mathbb{R}^n .

This theorem generalizes a theorem in Fukushima-Tanaka[FT, 2005] where a Poincaré inequality for \mathcal{E} was assumed.

The first construction of such a one-point reflection at ∂ goes back to [F1, 1969] where $\check{X} = X$ and X was the absorbing Brownian motion on an arbitrary bounded domain of \mathbb{R}^n .

This theorem generalizes a theorem in Fukushima-Tanaka[FT, 2005] where a Poincaré inequality for $\mathcal E$ was assumed.

There is an alternative quite different way to construct a one-point reflection \check{X}^* of \check{X} at ∂ by using a Poisson point process of excursions of \check{X} around ∂ ,

which makes the structure of the constructed process \check{X}^* more transparent

The first construction of such a one-point reflection at ∂ goes back to [F1, 1969] where $\check{X} = X$ and X was the absorbing Brownian motion on an arbitrary bounded domain of \mathbb{R}^n .

This theorem generalizes a theorem in Fukushima-Tanaka[FT, 2005] where a Poincaré inequality for $\mathcal E$ was assumed.

There is an alternative quite different way to construct a one-point reflection \check{X}^* of \check{X} at ∂

by using a Poisson point process of excursions of \check{X} around ∂ ,

which makes the structure of the constructed process \check{X}^* more transparent

but requires a certain regularity condition on the resolvent of \dot{X} in the construction ([FT], [CF2]).

<□ > < @ > < E > < E > E のQ @

Notice that \check{X}^* becomes irreducible, while \check{X} may not be.

Notice that \check{X}^* becomes irreducible, while \check{X} may not be.

 \check{X}^* connects at ∂ the irreducible components E_i of \check{X}

by the following entrance law $\mu_t(B)$ to piece together

the excursions of \check{X} on each E_i around ∂ :

$$\int_0^t \mu_t(B) ds = \int_B \check{\mathbf{P}}_x(\check{\zeta} \le t) \nu(dx), \quad B \subset E = \bigcup_i E_i.$$

Liouville property of $\mathcal E$ and uniqueness of a symmetric conservative diffusion extension of $\check X$

Let \widehat{E} be a Lusin space into which E is homeomorpically embedded as an open subset.

The measure ν on E is extended to \widehat{E} by setting $\nu(\widehat{E}\setminus E)=0.$

Let $Y = (Y_t, \zeta^Y, \mathbf{P}_x^Y)$ be any ν -symmetric conservative diffusion process on \widehat{E} whose part process on E being killed upon leaving E is identical in law with \check{X} .

We denote by $(\mathcal{E}^Y, \mathcal{F}^Y)$ the Dirichlet form of Y on $L^2(\widehat{E}; \nu)$.

We call Y a ν -symmetric consevative diffusion extension of \check{X} .

Liouville property of $\mathcal E$ and uniqueness of a symmetric conservative diffusion extension of $\check X$

Let \widehat{E} be a Lusin space into which E is homeomorpically embedded as an open subset.

The measure ν on E is extended to \widehat{E} by setting $\nu(\widehat{E}\setminus E)=0.$

Let $Y = (Y_t, \zeta^Y, \mathbf{P}^Y_x)$ be any ν -symmetric conservative diffusion process on \widehat{E} whose part process on E being killed upon leaving E is identical in law with \check{X} .

We denote by $(\mathcal{E}^Y, \mathcal{F}^Y)$ the Dirichlet form of Y on $L^2(\widehat{E}; \nu)$. We call Y a ν -symmetric consevative diffusion extension of \check{X} .

Theorem 5.1

Suppose \mathcal{E} satisfies the Liouville property (1.1). Then (i) As Dirichlet forms on $L^2(E,\nu)$,

$$(\mathcal{E}^Y, \mathcal{F}^Y) = (\mathcal{E}^*, \check{\mathcal{F}}^*).$$
(5.1)

(ii) A quasi-homeomorphic image of Y is identical with \check{X}^* .

Proof. \mathcal{E}^Y is a quasi-regular Dirichlet form on $L^2(\widehat{E};\nu)$ and Y is properly associated with it.

By the transfer method, we can therefore assume that \widehat{E} is a locally compact separable metric space,

u is a fully supported positive Radon measure on \widehat{E} ,

 $(\mathcal{E}^Y, \mathcal{F}^Y)$ is a regular Dirichlet form on $L^2(\widehat{E}; \nu)$ and Y is an associated diffusion Hunt process on \widehat{E} .

E is now quasi-open and hence q.e. finely open in \widehat{E} .

Proof. \mathcal{E}^Y is a quasi-regular Dirichlet form on $L^2(\widehat{E};\nu)$ and Y is properly associated with it.

By the transfer method, we can therefore assume that \widehat{E} is a locally compact separable metric space,

u is a fully supported positive Radon measure on \widehat{E} ,

 $(\mathcal{E}^Y, \mathcal{F}^Y)$ is a regular Dirichlet form on $L^2(\widehat{E}; \nu)$ and Y is an associated diffusion Hunt process on \widehat{E} .

E is now quasi-open and hence q.e. finely open in \widehat{E} .

Since \hat{X} is the part on E of Y, we can characterize its Dirichlet form (3.3) as

$$\check{\mathcal{F}} = \{ u \in \mathcal{F}^Y : u = 0 \quad \text{q.e. on} \quad \widehat{E} \setminus E \}, \quad \check{\mathcal{E}} = \mathcal{E}^Y \text{ on } \check{\mathcal{F}} \times \check{\mathcal{F}}.$$

This means that $\check{\mathcal{F}}$ is an ideal of \mathcal{F}^{Y} ; if $u \in \check{\mathcal{F}}_{b}, v \in \mathcal{F}_{b}^{Y}$, then $uv \in \check{\mathcal{F}}_{b}$, in other words, \mathcal{F}^{Y} is a Silverstein extension of $\check{\mathcal{F}}$.

We can then invoke Theorem 6.6.9 in [CF2] about

the maximality of the reflected Dirichlet space among Silverstein extensions

under the condition that the original Dirichlet form admits no killing inside, namely, $\kappa=0$ in its Beurling-Deny decomposition.

We can then invoke Theorem 6.6.9 in [CF2] about

the maximality of the reflected Dirichlet space among Silverstein extensions

under the condition that the original Dirichlet form admits no killing inside, namely, $\kappa = 0$ in its Beurling-Deny decomposition. This condition is missing in [CF2]. We can then invoke Theorem 6.6.9 in [CF2] about

the maximality of the reflected Dirichlet space among Silverstein extensions

under the condition that the original Dirichlet form admits no killing inside, namely, $\kappa = 0$ in its Beurling-Deny decomposition. This condition is missing in [CF2].

The reflected Dirichlet space of $\check{\mathcal{E}}$ equals $(\mathcal{F}^{\mathrm{ref}}, \mathcal{E}^{\mathrm{ref}})$ by virtue of Proposition 3.1 (ii). Thus

$$\mathcal{F}^Y \subset \mathcal{F}^{\mathrm{ref}}_a \ (= \mathcal{F}^{\mathrm{ref}} \cap L^2(E; \nu)),$$

But under the present asumption of the Liouville property (1.1).

$$\mathcal{F}^{\mathrm{ref}} = \mathcal{F}_e^*, \quad \mathcal{E}^{\mathrm{ref}} = \mathcal{E}^*, \quad \mathcal{F}_a^{\mathrm{ref}} = \check{\mathcal{F}}^*,$$
 (5.2)

so that $\mathcal{F}^Y \subset \check{\mathcal{F}}^*$.

We can then invoke Theorem 6.6.9 in [CF2] about

the maximality of the reflected Dirichlet space among Silverstein extensions

under the condition that the original Dirichlet form admits no killing inside, namely, $\kappa = 0$ in its Beurling-Deny decomposition. This condition is missing in [CF2].

The reflected Dirichlet space of $\check{\mathcal{E}}$ equals $(\mathcal{F}^{\mathrm{ref}}, \mathcal{E}^{\mathrm{ref}})$ by virtue of Proposition 3.1 (ii). Thus

$$\mathcal{F}^Y \subset \mathcal{F}^{\mathrm{ref}}_a \ (= \mathcal{F}^{\mathrm{ref}} \cap L^2(E; \nu)),$$

But under the present asumption of the Liouville property (1.1).

$$\mathcal{F}^{\mathrm{ref}} = \mathcal{F}_e^*, \quad \mathcal{E}^{\mathrm{ref}} = \mathcal{E}^*, \quad \mathcal{F}_a^{\mathrm{ref}} = \check{\mathcal{F}}^*,$$
 (5.2)

so that $\mathcal{F}^Y \subset \check{\mathcal{F}}^*$. As Y is assumed to be conservative while \check{X} has a finite liftime by Proposition 3.1 (i), $\check{\mathcal{F}}$ is a proper subspace of \mathcal{F}^Y . Hence we must have the identity $\mathcal{F}^Y = \check{\mathcal{F}}^*$. Since Y is a diffusion with no killing inside \hat{E} , the regular Dirichlet form $(\mathcal{E}^Y, \mathcal{F}^Y)$ is strongly local so that $\mathcal{E}^Y(1, 1) = 0$, yielding $\mathcal{E}^Y(w, w) = \mathcal{E}^Y(u, u) = \mathcal{E}(u, u) = \mathcal{E}^*(w, w)$, for $w_{\Box} = u_{\Box} + c$, $\underline{u} \in \check{\mathcal{F}}_{\Xi}$,