Semiclassical limit of the lowest eigenvalue of Schrödinger operators on path spaces

Shigeki Aida Osaka University

Let (X, g) be a compact Riemannian manifold and E, V be smooth real-valued functions on X. Let μ_{λ} be the probability measure such that $d\mu_{\lambda} = Z_{\lambda}^{-1} e^{-\lambda E} dx$ on X, where dx is the volume element and Z_{λ} is the normalizing constant.

Let

$$\mathcal{E}_{\lambda}(f,f) = \int_{X} |\nabla f(x)|^2 d\mu_{\lambda}(x) = \int_{X} (-L_{\lambda}f)(x) \cdot f(x) d\mu_{\lambda}(x) \tag{1}$$

$$\mathcal{E}_{\lambda,V}(f,f) = \mathcal{E}_{\lambda}(f,f) + \lambda^2 \int_X V(x)f(x)^2 d\mu_{\lambda}(x)$$
(2)

$$= \int_{X} (-L_{\lambda,V} f)(x) \cdot f(x) d\mu_{\lambda}(x)$$
(3)

$$E_0(\lambda, V) = \inf \left\{ \mathcal{E}_{\lambda, V}(f, f) \; \middle| \; \|f\|_{L^2(\mu_\lambda)} = 1 \right\}.$$
(4)

We recall the asymptotic behavior of $E_0(\lambda, V)$ as $\lambda \to \infty$. Assume that (A1) $U(x) = \frac{|\nabla E(x)|^2}{4} + V(x)$ is a nonnegative function which has finite zero point set $\{c_1, \ldots, c_n\}$.

(A2) The Hessian of U at c_i $(1 \le i \le n)$ is strictly positive.

Then we have

$$\lim_{\lambda \to \infty} \frac{E_0(\lambda, V)}{\lambda} = \min_{1 \le i \le n} \operatorname{tr} \left\{ \sqrt{\frac{(\nabla^2 U)(c_i)}{2}} - \frac{\nabla^2 E}{2}(c_i) \right\},\tag{5}$$

where ∇^2 denotes the second covariant derivative which is defined by the Levi-Civita connection. We extend this result to path space X with a Dirichlet form and a probability measure μ_{λ} which is written formally as $d\mu_{\lambda}(\gamma) = Z_{\lambda}^{-1} \exp(-\lambda E(\gamma)) d\gamma$, where γ denotes a path and $E(\gamma)$ is the energy of the path. $d\gamma$ is a formal Riemannian volume. In this talk, we consider the following three cases.

(I) X is an abstract Wiener space (B, H, μ) . The Dirichlet form is given by

$$\mathcal{E}_{\lambda,A}(f,f) = \int_{B} |A(w)Df(w)|_{H}^{2} d\mu_{\lambda}(w).$$
(6)

Here D denotes the usual H-derivative, $A(w) \in L(H, H)$ and $\mu_{\lambda}(\cdot) = \mu(\sqrt{\lambda} \cdot)$. We consider the Schrödinger operator $-L_{\lambda,A,V}$ corresponding to a semi-bounded form $\mathcal{E}_{\lambda,A,V}(f,f) = \mathcal{E}_{\lambda,A}(f,f) + \lambda^2 \int_B V(w) f(w)^2 d\mu_{\lambda}(w)$. In this case, $E(w) = \frac{1}{2} ||w||_H^2$. If $A(w) = I_H$, then the limit $\lim_{\lambda \to \infty} \frac{E_0(\lambda,V)}{\lambda}$ was studied in [1].

(II) $X = P_x(M) = C([0,1] \to M \mid \gamma(0) = x)$. Here *M* is a compact Riemannian manifold. The measure μ_{λ} is the Brownian motion measure which is given by the heat semigroup $e^{\frac{t}{2\lambda}\Delta}$. The Dirichlet form is given by the *H*-derivative:

$$(\nabla F)(\gamma) = \sum_{i=1}^{n} \tau(\gamma)_{t_i}^{-1} (\nabla f)_{\gamma(t_i)} (\gamma(t_1), \dots, \gamma(t_n)) t \wedge t_i,$$
(7)

where $F(\gamma) = f(\gamma(t_1), \ldots, \gamma(t_n))$ and $\tau(\gamma)_t : T_x(M) \to T_{\gamma(t)}M$ denotes the stochastic parallel translation. In this case, $E(\gamma) = \frac{1}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt$. (III) $X = P_{e,a}(G) = C([0,1] \to G \mid \gamma(0) = e, \gamma(1) = a \in G)$. Here G is a compact Lie group, e is

(III) $X = P_{e,a}(G) = C([0,1] \to G \mid \gamma(0) = e, \gamma(1) = a \in G)$. Here G is a compact Lie group, e is the unit element. In this case, μ_{λ} is the pinned Brownian motion measure $\nu_{\lambda,e,a}$ which is defined by $e^{\frac{t}{2\lambda}\Delta}$. The Dirichlet form is given by the probability measure $\nu_{\lambda,e,a}$ and the H-derivative:

$$(\nabla f(\gamma), h) = \lim_{\varepsilon \to 0} \frac{f(e^{\varepsilon h(\cdot)}\gamma(\cdot)) - f(\gamma)}{\varepsilon},$$
(8)

where $h \in H^1([0,1] \to \mathfrak{g} \mid h(0) = h(1) = 0)$ and \mathfrak{g} is the Lie algebra of G. In this case again, $E(\gamma) = \frac{1}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt$.

In these cases, we can determine the limit $\lim_{\lambda\to\infty} \frac{E_0(\lambda,V)}{\lambda}$ under the similar assumptions in (A1) and (A2). In the proof of the lower bound estimate, we combine the following two results:

(1) Rough lower bound estimate on $E_0(\lambda, V)$ which is given by a log-Sobolev inequality on X (2) "Approximation" of the Schrödinger operator near zero points of the potential function U by a Schrödinger operator with a quadratic potential function on an abstract Wiener space in the case where $A(w) = I_H + T$ and T is a trace class operator which is independent of w.

In the case of (II)($X = P_x(M)$), as to (2), we use an infinite dimensional version of the following simple result and a pointwise estimate on $\frac{L_{\lambda}\Omega_{\lambda,V}(x)-L_{\lambda,A}\Omega_{\lambda,V}(x)}{\Omega_{\lambda,V}(x)}$.

Proposition 1 We consider the forms in (1) and (2) and the lowest eigenvalue $E_0(\lambda, V)$ on the compact Riemannian manifold (X,g). Let $A(x) \in L(T_xX,T_xX)$ and assume that $x \to A(x)$ is smooth and set

$$\mathcal{E}_{\lambda,A}(f,f) = \int_X |A(x)\nabla f(x)|^2 d\mu_\lambda(x) = \int_X (-L_{\lambda,A}f)(x) \cdot f(x) d\mu_\lambda(x) \tag{9}$$

$$\mathcal{E}_{\lambda,A,V}(f,f) = \mathcal{E}_{\lambda,A}(f,f) + \lambda^2 \int_X V(x) f(x)^2 d\mu_\lambda(x).$$
(10)

Let $\Omega_{\lambda,V}$ be the positive normalized eigenfunction of $-L_{\lambda,V}$ corresponding to $E_0(\lambda,V)$. Then for any $f \in C^{\infty}(X)$, we have

$$\mathcal{E}_{\lambda,A}(f\Omega_{\lambda,V}, f\Omega_{\lambda,V}) = \int_{X} |A(x)\nabla f(x)|^2 \Omega_{\lambda,V}(x)^2 d\mu_{\lambda}(x) + E_0(\lambda, V) \|f\Omega_{\lambda,V}\|_{L^2(\mu_{\lambda})}^2 + \int_{X} \frac{L_{\lambda}\Omega_{\lambda,V}(x) - L_{\lambda,A}\Omega_{\lambda,V}(x)}{\Omega_{\lambda,V}(x)} f(x)^2 \Omega_{\lambda,V}(x)^2 d\mu_{\lambda}(x).$$
(11)

References

 S. Aida, Semiclassical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space, J. Funct. Anal.203, (2003), 401–424.